Nonlinear Iterative Hard Thresholding for Inverse Scattering
نویسندگان
چکیده
منابع مشابه
Accelerated iterative hard thresholding
The iterative hard thresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces two challenges when applied to practical problems. The step size parameter has to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the ste...
متن کاملIterative Hard Thresholding for Weighted Sparse Approximation
Recent work by Rauhut and Ward developed a notion of weighted sparsity and a corresponding notion of Restricted Isometry Property for the space of weighted sparse signals. Using these notions, we pose a best weighted sparse approximation problem, i.e. we seek structured sparse solutions to underdetermined systems of linear equations. Many computationally efficient greedy algorithms have been de...
متن کاملIterative Hard Thresholding for Compressed Sensing
Compressed sensing is a technique to sample compressible signals below the Nyquist rate, whilst still allowing near optimal reconstruction of the signal. In this paper we present a theoretical analysis of the iterative hard thresholding algorithm when applied to the compressed sensing recovery problem. We show that the algorithm has the following properties (made more precise in the main text o...
متن کاملNormalized Iterative Hard Thresholding for Matrix Completion
Matrices of low rank can be uniquely determined from fewer linear measurements, or entries, than the total number of entries in the matrix. Moreover, there is a growing literature of computationally efficient algorithms which can recover a low rank matrix from such limited information, typically referred to as matrix completion. We introduce a particularly simple yet highly efficient alternatin...
متن کاملIHT dies hard: Provable accelerated Iterative Hard Thresholding
We study –both in theory and practice– the use of momentum motions in classic iterative hard thresholding (IHT) methods. By simply modifying plain IHT, we investigate its convergence behavior on convex optimization criteria with non-convex constraints, under standard assumptions. In diverse scenaria, we observe that acceleration in IHT leads to significant improvements, compared to state of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Imaging Sciences
سال: 2020
ISSN: 1936-4954
DOI: 10.1137/19m1251928